top of page

Research Articles 

“The joy of discovery is certainly the liveliest that the mind of man can ever feel”

Morioka S*, Kajioka D, Yamaoka Y, Ellison R.M, Tufan T, Werkman I. L, Tanaka S, Barron B, Ito T.S,  Kucenas S, Okusa M.D and Ravichandran K. S*

Chimeric efferocytic receptors improve apoptotic cell clearance and alleviate inflammation.

 *Corresponding authors

Cell (2022) 185(26):4887-4903.e17.


Raymond MH, Davidson AJ, Shen Y, Tudor DR, Morioka S, Perry J.S.A Krapivkina J,Perrasis D., Schumancher L, Campbell RE, Wood W, and Ravichandran K.S.

Live cell tracking of macrophage efferocytosis during Drosophila embryo in vivo.

Science (2022) 375, 1182–1187

Medina C.B, Mehrotra P, Arandjelovic S, Perry J. S. A, Guo Y, Morioka S, Barron B, Walk S.F., Ghesquière B, Krupnick A.S, Lorenz U and Ravichandran K. S.

Metabolites released from apoptotic cells act as tissue messengers.

Nature (2020) 580,130–135

Perry J. S. A†, Morioka S†, Raymond M.H, Medina C.B, Shankman, Onengut-Gumuscu S and Ravichandran K. S.  †Equal contribution

Interpreting an apoptotic corpse as anti-inflammatory involves a chloride sensing pathway.

Nature Cell Biology (2019) 21, pages1532–1543 

Rival C.M, Xu C, Shankman L. S, Morioka S, Arandjelovic S, Lee C.S, Wheeler K. M, Smith R.P, Haney L.B, Isakson B.E, Purcell S, Lysiak J.J and Ravichandran K. S. 

PtdSer on viable sperm and phagocytic machinery components in oocytes as new players in sperm:egg fusion.

Nature Communications (2019) 10, 4456 

Morioka S, Perry J. S. A, Raymond M. H, Medina C.B, Zhu Y, Zhao L, Serbulea V, Onengut-Gumuscu S, Letinger N, Kucenas S, Rathmell J.C, Makowski L and Ravichandran K. S.

Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release. 

Nature (2018) 563, 714–718

Mihaly SR†, Sakamachi Y, Ninomiya-Tsuji J and Morioka S†*.

Noncanonical cell death program independent of caspase activation cascade and necroptotic modules is elicited by loss of TGFβ-activated kinase 1. †Equal contribution *Corresponding author

Scientific Reports (2017) 7: 2918


Michaels AD, Newhook TE, Adair SJ, Morioka S, Goudreau BJ, Nagdas S, Mullen MG, Persily JB, Bullock T, Slingluff CL, Ravichandran KS, Parsons JT, Bauer TW.

CD47 Blockade as an Adjuvant Immunotherapy for Resectable Pancreatic Cancer.

Clinical Cancer Research (2017)


Sakamachi Y, Morioka S, Sai K, Takaesu G, Foley JF, Fessler MB, Ninomiya-Tsuji J.

TAK1 regulates thymic and lung morphogenesis through protecting lysosome integrity in macrophages.

Cell Death and Disease (2017) 8, e2598.


Morioka S*, Sai K, Omori E, Ikeda Y, Matsumoto K and Ninomiya-Tsuji J *.

TAK1 regulates hepatic lipid homeostasis through SREBP. *Corresponding authors

Oncogene (2016) 35, 3829–3838.


Sai K, Morioka S, Takaesu G, Muthusamy N, Ghashghaei HT, Hanafusa H, Matsumoto K, and Ninomiya-Tsuji J.

TAK1 determines susceptibility to endoplasmic reticulum stress and hypothalamic leptin resistance.

Journal of Cell Science (2016) 129(9):1855-65.

Mihaly SR, Morioka S, Ninomiya-Tsuji J and Takaesu G.

Activated macrophage survival is coordinated by TAK1 binding proteins.

PLOS ONE (2014) 9(4):e94982


Morioka S, Broglie P, Omori E, Ikeda Y, Takaesu G, Matsumoto K and Ninomiya-Tsuji J.

TAK1 kinase switches cell fate from apoptosis to necrosis following TNFα stimulation.

The Journal of Cell Biology (2014) 204 (4), 607-623


Ikeda Y, Morioka S, Matsumoto K and Ninomiya-Tsuji J.

TAK1 binding protein 2 is essential for liver protection from stressors.

PLOS ONE (2014) 9 (2): e88037


Morioka S, Inagaki M, Komatsu Y, Mishina Y, Matsumoto K and Ninomiya-Tsuji J.

TAK1 kinase signaling regulates embryonic angiogenesis by modulating endothelial cell survival and migration.

Blood (2012) 120, 3846-3857


Morioka S, Omori E, Kajino T, Kajino-Sakamoto R, Matsumoto K and Ninomiya-Tsuji J.

TAK1 kinase determines TRAIL sensitivity by modulating reactive oxygen species and cIAP.

Oncogene (2009) (Featured article) 28, 2257-2265


Omori E, Morioka S, Matsumoto K, and Ninomiya-Tsuji J.

TAK1 regulates reactive oxygen species and cell death in keratinocytes, which is essential for skin integrity. 

Journal of Biological Chemistry (2008) 283, 26161-26168

Review Articles 

Arai Y, Yamaoka Y, Morioka S

Sweeping Up Dying Cells during Tissue Injury

Nephron (2021) Jul 20;1-4. doi: 10.1159/000517731.

Morioka SMaueröder CRavichandran KS

Living on the Edge: Efferocytosis at the Interface of Homeostasis and Pathology.

Immunity (2019) May 21;50(5):1149-1162.

Morioka S*.

Transforming growth factor-β activated kinase 1 pathway. *Corresponding author

Encyclopedia of Signaling Molecules, 2nd edition. New York, Springer (2017) 

Mihaly SR, Ninomiya-Tsuji J* and Morioka S*.

TAK1 Control of Cell Death. *Corresponding authors

Cell Death and Differentiation (2014) 21, 1667–1676

Other Reference

Arai Y, Yamaoka Y, Morioka S*.

Trogocytosis and Efferocytosis 

Jikken Igaku (2021) Sep Vol.39 No.14

 企画/森岡 翔 

 概論―貪食の多様性から見る新たな細胞間コミュニケーションの世界【山岡優佑,新井洋平,森岡 翔】

 実験医学9月号・空間トランスクリプトーム 細胞内局在から組織構成まで、遺伝子発現の位置情報がわかる!


Morioka S*.

A novel pathway regulating pro vs anti-inflammatory response during cell clearance *Corresponding author

Jikken Igaku (2020) Mar vol.38 No.8 



Morioka S*.

Lab Report *Corresponding author

Jikken Igaku (2019) Dec vol.37 No.19

  ラボレポート 独立編  実験医学12月号・腫瘍血管と免疫環境 

Morioka S*.

Transcriptome analysis of cells engulfing apoptotic cells *Corresponding author

Jikken Igaku (2019) Apr vol.37 No.6 


 実験医学4月号・神経変性疾患の次の突破口: カレントトピック 

bottom of page