Research Articles
“The joy of discovery is certainly the liveliest that the mind of man can ever feel”
Morioka S*, Kajioka D, Yamaoka Y, Ellison R.M, Tufan T, Werkman I. L, Tanaka S, Barron B, Ito T.S, Kucenas S, Okusa M.D and Ravichandran K. S*
Chimeric efferocytic receptors improve apoptotic cell clearance and alleviate inflammation.
*Corresponding authors
Cell (2022) 185(26):4887-4903.e17.
Raymond MH, Davidson AJ, Shen Y, Tudor DR, Morioka S, Perry J.S.A Krapivkina J,Perrasis D., Schumancher L, Campbell RE, Wood W, and Ravichandran K.S.
Live cell tracking of macrophage efferocytosis during Drosophila embryo in vivo.
Science (2022) 375, 1182–1187
Medina C.B, Mehrotra P, Arandjelovic S, Perry J. S. A, Guo Y, Morioka S, Barron B, Walk S.F., Ghesquière B, Krupnick A.S, Lorenz U and Ravichandran K. S.
Metabolites released from apoptotic cells act as tissue messengers.
Nature (2020) 580,130–135
Perry J. S. A†, Morioka S†, Raymond M.H, Medina C.B, Shankman, Onengut-Gumuscu S and Ravichandran K. S. †Equal contribution
Interpreting an apoptotic corpse as anti-inflammatory involves a chloride sensing pathway.
Nature Cell Biology (2019) 21, pages1532–1543
Rival C.M, Xu C, Shankman L. S, Morioka S, Arandjelovic S, Lee C.S, Wheeler K. M, Smith R.P, Haney L.B, Isakson B.E, Purcell S, Lysiak J.J and Ravichandran K. S.
PtdSer on viable sperm and phagocytic machinery components in oocytes as new players in sperm:egg fusion.
Nature Communications (2019) 10, 4456
Morioka S, Perry J. S. A, Raymond M. H, Medina C.B, Zhu Y, Zhao L, Serbulea V, Onengut-Gumuscu S, Letinger N, Kucenas S, Rathmell J.C, Makowski L and Ravichandran K. S.
Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release.
Nature (2018) 563, 714–718
Mihaly SR†, Sakamachi Y, Ninomiya-Tsuji J and Morioka S†*.
Noncanonical cell death program independent of caspase activation cascade and necroptotic modules is elicited by loss of TGFβ-activated kinase 1. †Equal contribution *Corresponding author
Scientific Reports (2017) 7: 2918
Michaels AD, Newhook TE, Adair SJ, Morioka S, Goudreau BJ, Nagdas S, Mullen MG, Persily JB, Bullock T, Slingluff CL, Ravichandran KS, Parsons JT, Bauer TW.
CD47 Blockade as an Adjuvant Immunotherapy for Resectable Pancreatic Cancer.
Clinical Cancer Research (2017)
Sakamachi Y, Morioka S, Sai K, Takaesu G, Foley JF, Fessler MB, Ninomiya-Tsuji J.
TAK1 regulates thymic and lung morphogenesis through protecting lysosome integrity in macrophages.
Cell Death and Disease (2017) 8, e2598.
Morioka S*, Sai K, Omori E, Ikeda Y, Matsumoto K and Ninomiya-Tsuji J *.
TAK1 regulates hepatic lipid homeostasis through SREBP. *Corresponding authors
Oncogene (2016) 35, 3829–3838.
Sai K, Morioka S, Takaesu G, Muthusamy N, Ghashghaei HT, Hanafusa H, Matsumoto K, and Ninomiya-Tsuji J.
TAK1 determines susceptibility to endoplasmic reticulum stress and hypothalamic leptin resistance.
Journal of Cell Science (2016) 129(9):1855-65.
Mihaly SR, Morioka S, Ninomiya-Tsuji J and Takaesu G.
Activated macrophage survival is coordinated by TAK1 binding proteins.
PLOS ONE (2014) 9(4):e94982
Morioka S, Broglie P, Omori E, Ikeda Y, Takaesu G, Matsumoto K and Ninomiya-Tsuji J.
TAK1 kinase switches cell fate from apoptosis to necrosis following TNFα stimulation.
The Journal of Cell Biology (2014) 204 (4), 607-623
Ikeda Y, Morioka S, Matsumoto K and Ninomiya-Tsuji J.
TAK1 binding protein 2 is essential for liver protection from stressors.
PLOS ONE (2014) 9 (2): e88037
Morioka S, Inagaki M, Komatsu Y, Mishina Y, Matsumoto K and Ninomiya-Tsuji J.
TAK1 kinase signaling regulates embryonic angiogenesis by modulating endothelial cell survival and migration.
Blood (2012) 120, 3846-3857
Morioka S, Omori E, Kajino T, Kajino-Sakamoto R, Matsumoto K and Ninomiya-Tsuji J.
TAK1 kinase determines TRAIL sensitivity by modulating reactive oxygen species and cIAP.
Oncogene (2009) (Featured article) 28, 2257-2265
Omori E, Morioka S, Matsumoto K, and Ninomiya-Tsuji J.
TAK1 regulates reactive oxygen species and cell death in keratinocytes, which is essential for skin integrity.
Journal of Biological Chemistry (2008) 283, 26161-26168
Review Articles
Arai Y, Yamaoka Y, Morioka S,
Sweeping Up Dying Cells during Tissue Injury
Nephron (2021) Jul 20;1-4. doi: 10.1159/000517731.
Morioka S, Maueröder C, Ravichandran KS
Living on the Edge: Efferocytosis at the Interface of Homeostasis and Pathology.
Immunity (2019) May 21;50(5):1149-1162.
Morioka S*.
Transforming growth factor-β activated kinase 1 pathway. *Corresponding author
Encyclopedia of Signaling Molecules, 2nd edition. New York, Springer (2017)
Mihaly SR, Ninomiya-Tsuji J* and Morioka S*.
TAK1 Control of Cell Death. *Corresponding authors
Cell Death and Differentiation (2014) 21, 1667–1676
Other Reference
Arai Y, Yamaoka Y, Morioka S*.
Trogocytosis and Efferocytosis
Jikken Igaku (2021) Sep Vol.39 No.14
企画/森岡 翔
概論―貪食の多様性から見る新たな細胞間コミュニケーションの世界【山岡優佑,新井洋平,森岡 翔】
実験医学9月号・空間トランスクリプトーム 細胞内局在から組織構成まで、遺伝子発現の位置情報がわかる!
Morioka S*.
A novel pathway regulating pro vs anti-inflammatory response during cell clearance *Corresponding author
Jikken Igaku (2020) Mar vol.38 No.8
死細胞が引き起こす過剰炎症反応を防ぐ新たな経路の発見
実験医学5月号・マルチオミクスを使って得られた最新知見〜糖尿病・がん・腸内細菌研究における実例と解析法
Morioka S*.
Lab Report *Corresponding author
Jikken Igaku (2019) Dec vol.37 No.19
ラボレポート 独立編 実験医学12月号・腫瘍血管と免疫環境
Morioka S*.
Transcriptome analysis of cells engulfing apoptotic cells *Corresponding author
Jikken Igaku (2019) Apr vol.37 No.6
アポトーシス細胞貪食過程の遺伝子発現の変化
実験医学4月号・神経変性疾患の次の突破口: カレントトピック